Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing.
نویسندگان
چکیده
The circadian timing system involves an autoregulatory transcription/translation feedback loop that incorporates a diverse array of factors to maintain a 24-h periodicity. In Arabidopsis a novel F-box protein, ZEITLUPE (ZTL), plays an important role in the control of the free-running period of the circadian clock. As a class, F-box proteins are well-established components of the Skp/Cullin/F-box (SCF) class of E3 ubiquitin ligases that link the target substrates to the core ubiquitinating activity of the ligase complex via direct association with the Skp protein. Here we identify and characterize the SCFZTL complex in detail. Yeast two-hybrid tests demonstrate the sufficiency and necessity of the F-box domain for Arabidopsis Skp-like protein (ASK) interactions and the dispensability of the unique N-terminal LOV domain in this association. Co-immunoprecipitation of full-length (FL) ZTL with the three known core components of SCF complexes (ASK1, AtCUL1 and AtRBX1) demonstrates that ZTL can assemble into an SCF complex in vivo. F-box-containing truncated versions of ZTL (LOV-F and F-kelch) can complex with SCF components in vivo, whereas stably expressed LOV or kelch domains alone cannot. Stable expression of F-box-mutated FL ZTL eliminates the shortened period caused by mild ZTL overexpression and also abolishes ASK1 interaction in vivo. Reduced levels of the core SCF component AtRBX1 phenocopy the long period phenotype of ztl loss-of-function mutations, demonstrating the functional significance of the SCFZTL complex. Taken together, our data establish SCFZTL as an essential SCF class E3 ligase controlling circadian period in plants.
منابع مشابه
Plant Biology Select
Most organisms have daily rhythms set by environmental conditions such as light. Plants in particular are very sensitive to changes in their environment, responding to such changes with altered growth and development. At a molecular level, changes in the environment are detected and processed through an internal circadian clock. At the core of all circadian clocks is a transcriptional feedback ...
متن کاملTargeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana.
Circadian clocks comprise several regulatory feedback loops that control gene transcription. However, recent evidence has shown that posttranslational mechanisms are also required for clock function. In Arabidopsis thaliana, members of the PSEUDO-RESPONSE REGULATOR (PRR) family were proposed to be components of the central oscillator. Using a PRR5-specific antibody, we characterized changes in ...
متن کاملThe F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time.
As an F-box protein, ZEITLUPE (ZTL) is involved in targeting one or more substrates for ubiquitination and degradation via the proteasome. The initial characterization of ZTL suggested a function limited largely to the regulation of the circadian clock. Here, we show a considerably broader role for ZTL in the control of circadian period and photomorphogenesis. Using a ZTL-specific antibody, we ...
متن کاملHSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE.
The autoregulatory loops of the circadian clock consist of feedback regulation of transcription/translation circuits but also require finely coordinated cytoplasmic and nuclear proteostasis. Although protein degradation is important to establish steady-state levels, maturation into their active conformation also factors into protein homeostasis. HSP90 facilitates the maturation of a wide range ...
متن کاملF-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression.
Regulation of protein turnover mediated by ZEITLUPE (ZTL) constitutes an important mechanism of the circadian clock in Arabidopsis thaliana. Here, we report that FLAVIN BINDING, KELCH REPEAT, F-BOX1 (FKF1) and LOV KELCH PROTEIN2 (LKP2) play similar roles to ZTL in the circadian clock when ZTL is absent. In contrast with subtle circadian clock defects in fkf1, the clock in ztl fkf1 has a conside...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 40 2 شماره
صفحات -
تاریخ انتشار 2004